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SUMMARY

This paper is concerned with the problem of the shape reconstruction of two-dimensional flows governed
by the Navier–Stokes equations. Our objective is to derive a regularized Gauss–Newton method using the
corresponding operator equation in which the unknown is the geometric domain. The theoretical foundation
for the Gauss–Newton method is given by establishing the differentiability of the initial boundary value
problem with respect to the boundary curve in the sense of a domain derivative. The numerical examples
show that our theory is useful for practical purpose and the proposed algorithm is feasible. Copyright q
2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In this paper, we are interested in the identification of an obstacle immersed in a fluid driven
by the two-dimensional Navier–Stokes equations. This problem arises in aerospace, automotive,
hydraulic, ocean, structural and wind engineering. Example applications include aerodynamic
design of automotive vehicles, train, low-speed aircraft and hydrodynamic design for ship hulls,
turbomachinery and offshore structures.

Early works concerning with the domain derivative have been addressed in [1, 2]. Kirsch and
Hettlich solved the inverse obstacle scattering problem for sound soft and sound hard obstacles
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by the domain derivative method, and in [3], Hettlich considers an inverse conductive scattering
problem using the domain derivative. In [4, 5], the three authors applied the domain derivative
to deal with the inverse boundary problem for the time-dependent heat equation in the case of
perfectly conducting and insulating inclusions. In [6], we solved a shape reconstruction problem for
heat conduction with mixed condition. Moreover, we derived the expressions of domain derivative
for the inverse Stokes problem and investigate the numerical simulation by the regularized Gauss–
Newton iterative method in [7].

In this paper, we extend the concept of the domain derivative to two-dimensional flows governed
by Navier–Stokes equations, and present the efficient numerical algorithm for the two-dimensional
realizations of the shape reconstruction problems.

The divergence-free condition coming from the fact that the fluid has a homogeneous density
and evolves as an incompressible flow, and it is very difficult to impose on the mathematical and
numerical point of view. We use Piola transformation to bypass the divergence-free condition for
the flow.

This paper is organized into three parts. In the remainder of the section we establish the notation
that will be used throughout the work. Section 2 is devoted to introduce Piola transformation for
divergence-free condition and we establish the differentiability of the solution with respect to the
boundary. This will serve as the theoretical foundation of the Newton method for the approximation
solution considered in the third part of the paper. The third section describes regularized Newton
schemes applied to the numerical inverse problem. The results of several numerical experiments
show that the iterative algorithm gives good reconstruction and our theoretical work is correct.

Throughout the paper we will use the standard notation for Sobolev spaces (see [8]). Specially
Hr (�), where r is an integer greater than zero, will denote the Sobolev space of real-valued
functions with square integrable derivatives of order up to r equipped with the usual norm which
we denote ‖·‖r . We will denote H0(�) by L2(�), and the standard L2 inner product by (·, ·).
Also Hr(X) will denote the space of vector-valued functions each of whose n components belong
to Hr (�). We introduce the space

H1
0(�) :={v∈H1(�),v|�� =0}

H1(div,�) :={v∈H1(�),divv=0 in �}

and

H1
0(div,�) :={v∈H1(�),divv=0 in �,v|�� =0}

2. DOMAIN DERIVATIVE

We assume that �1 and �2 are two simply connected bounded domains of class C2 in RN (N =2
or 3), such that �̄2⊂�1. The boundaries of �1 and �2 are denoted by �1 and �2, respectively.
Further, we denote � :=�1\�̄2, and let f∈L2(�) be a given vector function in �. We seek a
vector function u=(u1,u2, . . . ,un)T representing the velocity of the fluid, and a scalar function
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p representing the pressure, which are defined in � and satisfy the following equations and the
boundary conditions (� is the coefficient of kinematic viscosity):

−��u+(u·∇)u+∇ p = f in �

divu = 0 in �

u = 0 on �1

u = 0 on �2

(1)

If f,u and p are smooth functions satisfying (1) then, taking the scalar product of (1) with a
function v∈H1

0(div,�), we obtain

seek u∈H1
0(div,�) such that

a(u,v)+b(u,u,v)=(f,v) ∀v∈H1
0(div,�)

(2)

where

a(u,v)=�
n∑

i, j=1

∫
�
(Diu j )(Div j )dx

b(u,v,w)=
n∑

i, j=1

∫
�
ui (Div j )w j dx

Taking v=u in (2), we derive

‖u‖1��−1‖f‖0 (3)

Continuity of the forms a(·, ·) and b(·, ·, ·) can be demonstrated. And under the assumption,

‖b‖�−2‖f‖0<1

the condition guarantees the existence and uniqueness of a solution u (see [9, 10]).
Let a perturbation of the interior boundary �2 be specified by

�h
2 ={x+h(x),x∈�2}

which is a C2 boundary of a perturbed domain �h , if the vector field h∈C2(�2) is sufficiently
small. We choose an extension of h∈C2(�) with ‖h‖C2(�)�c‖h‖C2(�2)

,c>0, which vanishes in
the exterior of a neighbourhood of �2, and define the diffeomorphism �(x)=x+h(x) in �. If the
inverse function of � is denoted by �, J�, J� and Jh are Jacobian matrices.

Lemma 2.1 (Delfour and Zolésio [11])
The Piola transformation

P :w→(det(J�)−1 J�w̃)◦�

is an isomorphism, where w∈H1
0(div,�h) and w̃∈H1

0(div,�).
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It still satisfies the condition of divergence free by the transformation, i.e.∫
�h

divw ·qh dxh

=−
∫

�h

w ·∇qh dxh+
∫

��h

w ·qh ·ndsh

=−
∫

�h

(det(J�)−1 J�w̃◦�) ·∇(q ◦�)dxh

=−
∫

�h

(det(J�)−1 J�w̃◦�) ·(∇q J−1
� ◦�)dxh

=−
∫

�
w̃ ·∇q dx=

∫
�
div w̃·q dx

Let uh ∈H1
0(div,�h) be the solution of corresponding boundary value problem,

�
∫

�h

∇uh ·∇vh dxh+
∫

�h

(uh ·∇)uh ·vh dxh =
∫

�h

fh ·vh dxh ∀vh ∈H1
0(div,�h) (4)

Changing the variables by the Piola transformation leads to

�
∫

�
∇(Bũ) ·∇(Bv)Adx+

∫
�
(Bũ·∇)Bũ·vdx=

∫
�
f̃·vJ� dx ∀v∈H1

0(div,�) (5)

where the notations B=det(J�)−1 J�, A= J−1
� (J−1

� )Tdet(J�) and f̃= fh ◦�.

From J� = I + Jh and J� = J−1
� ◦�= I − Jh+O(‖h‖2

C2(�)
), the following estimates hold:

‖J−1
� (J−1

� )Tdet(J�)− I + Jh+ JTh −divh· I‖∞ =O(‖h‖2C2(�)
) (6)

‖f̃· J�−f−f ·divh−h·∇f‖∞ =O(‖h‖2C2(�)
) (7)

and

‖J−1
� det(J�)− I + Jh−divh· I‖∞ =O(‖h‖2C2(�)

) (8)

At first, we prove the norm estimate (6). From J� = I + Jh , we can obtain

J−1
� (J−1

� )T det(J�)− I + Jh+ JTh −divh· I
=(I − Jh+O(‖h‖2C2(�)

))(I − JTh +O(‖h‖2C2(�)
))(1+divh+O(‖h‖2C2(�)

))

−I + Jh+ JTh −divh· I
=(I − Jh− JTh +O(‖h‖2C2(�)

))(1+divh+O(‖h‖2C2(�)
))− I + Jh+ JTh −divh· I
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= I − Jh− JTh +divh· I +O(‖h‖2C2(�)
)− I + Jh+ JTh −divh· I

=O(‖h‖2C2(�)
)

Similarly, we can get the norm approximations (7) and (8).

Lemma 2.2 (Hettlich [2, 3])
If ui ,vi ∈H1

0 (�), i=1, . . . ,N , then the following identity holds:

∇ui (Jh+ JTh −divh· I )∇vi =div[di ]−(h·∇ui )�vi −(h·∇vi )�ui (9)

where di =(h·∇ui )∇vi +(h·∇vi )∇ui −(∇ui ·∇vi )h.

Lemma 2.3 (Delfour and Zolésio [11])
Let w∈C2(�) be a scalar function, and a vector field v∈C1(�)N . The following decompositions
hold:

∇w=∇�w+�nwn (10)

v=(v ·n)n+v�, v� =n∧(v∧n) (11)

Theorem 2.1
Let f belong to L2(�),u∈H1

0(div,�) denote the solution of (1), and ũ is defined in (5). Then u
is differentiable at �2 in the sense that there exists u∗ depending on h, such that

lim
h→0

1

‖h‖C2
‖ũ−u−u∗‖1=0 (12)

Furthermore u∗ =u′+(h·∇)u, where the domain derivative u′ is defined by the solution of the
boundary value problem

−��u′+(u·∇)u′+(u′ ·∇)u+∇p′ = 0 in �

divu′ = 0 in �

u′ = 0 on �1

u′ = −hn
�u
�n

on �2

(13)

where hn =h·n is the normal component of the vector field h.

Proof
First of all, we establish continuous dependence of the solution u on variations of the boundary �2.
Then we will prove the differentiability of the solution with respect to the boundary �2, and deduce
the domain derivative of Navier–Stokes equations. �

We consider the difference ũ−u, and the variational equation yields

a(ũ−u,v)+b(ũ−u, ũ−u,v)

=a(ũ,v)−a(Bũ,v)+a(Bũ,v)−a(Bũ, Bv)
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+a(Bũ, Bv)−�
∫

�
∇(Bũ) ·∇(Bv)Adx+�

∫
�

∇(Bũ) ·∇(Bv)Adx

−a(u,v)−b(u,u,v)+b(ũ, ũ,v)−b(Bũ, ũ,v)+b(Bũ, ũ,v)

−b(Bũ, Bũ,v)−b(ũ,u,v)−b(u, ũ,v)+b(Bũ, Bũ,v)+2b(u,u,v)

From Equations (4) and (5), we obtain

a(ũ−u,v)+b(ũ−u, ũ−u,v)

=a((I −B)ũ,v)+a(Bũ, (I −B)v)+�
∫

�
∇(Bũ) ·∇(Bv)(I −A)dx

+
∫

�
f̃·vJ� dx−

∫
�
f ·vdx+b((I −B)ũ, ũ,v)

+b(Bũ, (I −B)ũ,v)+b(u− ũ,u,v)+b(u,u− ũ,v)

Let v= ũ−u in the last expression, and recall the inequality (3). The perturbation argument shows
the continuity in the light of the approximation (6)–(8),

‖ũ−u‖1→0 as ‖h‖C2(�) →0

In order to show the differentiability, let u∗ ∈H1
0(�) be the solution of

a(u∗,v)+b(u∗,u,v)+b(u,u∗,v)

=�
∫

�
∇u(Jh+ JTh −divh· I ) ·∇vdx+

∫
�
(divh·f+(h·∇)f)vdx

+
∫

�
[((h·∇)u−divh· I ) ·∇]u·vdx (14)

for all v∈H1
0(div,�).

According to the properties of forms a(·, ·) and b(·, ·, ·), the following expression holds:

a(ũ−u−u∗,v)+b(ũ−u−u∗, ũ−u−u∗,v)

=a(ũ−u,v)−a(u∗,v)+b(ũ−u, ũ−u,v)

+b(u,u∗,v)+b(u∗,u,v)−b(ũ,u∗,v)−b(u∗, ũ,v)+b(u∗,u∗,v)

=a(ũ−u,v)−a(u∗,v)+b(ũ−u, ũ−u,v)

+b(u− ũ,u∗,v)−b(u∗, ũ−u−u∗,v)
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Considering u∗ is the solution of (14), and we derive

a(ũ−u−u∗,v)+b(ũ−u−u∗, ũ−u−u∗,v)

=a((I −B)ũ,v)+a(Bũ, (I −B)v)+�
∫

�
∇(Bũ) ·∇(Bv)(I −A)dx

+
∫

�
(f̃· J�−f) ·vdx+b((I −B)ũ, ũ,v)+b(Bũ, (I −B)ũ,v)

−�
∫

�
∇u(Jh+ JTh −divh· I ) ·∇vdx−

∫
�
(divh·f+(h·∇)f)vdx

+b(u− ũ,u,v)+b(u,u− ũ,v)+b(u− ũ,u∗,v)−b(u∗, ũ−u−u∗,v)

Taking v= ũ−u−u∗, and apply the norm estimates (6)–(8) again,

1

‖h‖C2
‖ũ−u−u∗‖1→0 as ‖h‖C2 →0

Next, we split u∗ into (h·∇)u and u′. In terms of the Lemmas 2.2 and 2.3 and the divergence
formula, we obtain∫

�
div[d]dx =

∫
�
div[((h·∇)u)∇v+((h·∇)v)∇u−(∇u·∇v)h]dx

=
∫

��
[((h·∇)u)∇v+((h·∇)v)∇u−(∇u·∇v)h]·nds

=
∫

��
((h·∇)u)∇v ·nds

Taking use of the Green formula, therefore,

a((h·∇)u,v) = −�
∫

�
((h·∇)u)�vdx+

∫
��

((h·∇)u)∇v ·nds

= �
∫

�
(div[d]−((h·∇)u)�v−((h·∇)v)�u)dx

−
∫

�
((h·∇)v)(f−(u·∇)u)dx

= �
∫

�
(div[d]−((h·∇)u)�v−((h·∇)v)�u)dx

+
∫

�
divh·v(f−(u·∇)u)dx+

∫
�
v((h·∇)(f−(u·∇)u))dx

−
∫

��
h·v(f−(u·∇)u) ·nds
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= �
∫

�
(div[d]−((h·∇)u)�v−((h·∇)v)�u)dx

+
∫

�
divh·v(f−(u·∇)u)dx+

∫
�
v((h·∇)(f−(u·∇)u))dx

We add the trilinear forms to the last equality and utilize Lemma 2.2,

a((h·∇)u,v)+b(u, (h·∇)u,v)+b((h·∇)u,u,v)

=�
∫

�
∇u(Jh+ JTh −divh· I ) ·∇vdx+

∫
�
(divh·f+(h·∇)f)vdx

+
∫

�
[(((h·∇)u) ·∇)u−divh(u·∇)u]·vdx

=a(u∗,v)+b(u,u∗,v)+b(u∗,u,v)

Thus, the following identity holds:

a(u′,v)+b(u,u′,v)+b(u′,u,v)=0

Since the perturbation is only on the boundary �2, then

u′ =0 on �1

It is known that u|�2 =0 implies ∇�u|�2 =0. Note that u∗ vanishes on the boundary �2,

u′ =u∗−h·∇u=−
(
h� ·∇�u+h· �u

�n
n
)

=−hn
�u
�n

Thus, u′ satisfies the boundary value problem (13). The theorem is proved. �

3. NUMERICAL EXAMPLES

This section describes the essential step of an iterative algorithm for the inverse problem, which
we formulate in two dimension. Newton method is based on the observation that the solution to
the problem (1) defines an operator F on set X of admissible boundaries by

F(�2)= P (15)

where X :={�∈C2(�2),0<��‖�‖C2��}, and � is the parametrized form of the unknown interior
boundary �2. P is referred to as the measured data, based on the direct problem (1), P could be
the measured normal press or the velocity on the boundary.

However, since the linearized version of (15) inherits the ill-posedness, the Newton iterations
need to be regularized. This approach has the advantages that, in principle, it is conceptually
simple and that it leads to highly accurate reconstructions. But, as disadvantages we note that the
numerical implementation requires the forward solution of the problem (1) in each step of the
Newton iteration and reasonable a priori information for the initial approximation.
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A numerical implementation requires a parametrization of the boundary. Here we use the
parametric representations

�k :={xk(t)=(xk,1(t), xk,2(t)),0�t<2�}, k=1,2

where xk :R→R2 is twice differentiable and 2�-periodic with |x ′
k(t)|>0 for all t , and assume

that � :={x2(t) :	1�t�	2}. Further we assume that the orientation of the parametrization x1 is
clockwise and the parametrization x2 is counter-clockwise. In addition, we assume that �2 is
starlike with respect to the origin, i.e.

x
(t)=r
(t)

(
cos t

sin t

)
, 0�t�2� (16)

where

r
(t)=
0+
M∑
j=1

(
 j cos j t+
 j+M sin j t)

with a=(
0, . . . ,
2M )T∈R2M+1 for some fixed number M ∈N .
Let UM :={a∈ R2M+1 :�1�r
(t)��2, t ∈[0,2�]} for some 0<�1<�2. We can assign to each

a∈UM the cost function F(�2)(xi ), i=1, . . . ,Q. In the following we fix M and Q. A simple
application of Theorem 2.1 shows

Theorem 3.1
For a∈UM the mapping F is differentiable with �Fi (
)/�
 j =�nu j

′(xi ) for i=1, . . . ,Q and
j =0, . . . ,2M . Here u′

j ∈H1(div,�) is the solution of the boundary value problem

−��u′
j +(u j ·∇)u′

j +(u′
j ·∇)u j +∇ p′

j = 0 in �

divu′
j = 0 in �

u′
j = 0 on �1

u′
j = −k

�u j

�ni
on �2

(17)

where

k=− r
(t)√
r ′

(t)

2+r
(t)2

{
cos j t, j =0, . . . ,M

sin( j−M)t, j =M+1, . . . ,2M

for t ∈[0,2�].
The numerical algorithm can be summarized as follows:

Step (1): Given an original boundary, we parametrize it to 
0.
Step (2): Solve the direct problem (1) by the finite element method.
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Figure 1. Initial mesh in case 1 with 362 nodes.

0.1–0.1–0.3–0.5
–0.4

–0.2

0.3 0.5

0

0.2

0.4

Figure 2. The numerical result of case 1 with �=0.02.

Step (3): According to Theorem 3.1, for a given 
n , we calculate the Jacobian matrix J (
),

J (
n+1)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

�F1(
n)
�
n0

�F1(
n)
�
n1

· · · �F1(
n)
�
n2M

...
...

. . .
...

�FQ(
n)

�
n0

�FQ(
n)

�
n1
· · · �FQ(
n)

�
n2M

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
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0.1 0.3 0.5

0

0.2

0.4

–0.1–0.3–0.5
–0.4

–0.2

Figure 3. The numerical result of case 1 with �=0.01.

0.1 0.3 0.5

0

0.2

0.4

–0.1–0.3–0.5
–0.4

–0.2

Figure 4. The numerical result of case 1 with �=0.005.

Step (4): Apply the Gauss–Newton method,


n+1=
n−(J (
n)T J (
n))−1 J (
n)r(
n)

where r(
n)=(F1(
n)−P1, . . . ,FQ(
n)−PQ)T. If

Q∑
i=1

|Fi (
n)−Pi |+�‖
‖2<

where � is a regularization parameter, then terminate, otherwise go back to step (2).
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Figure 5. Initial mesh in case 2 with 448 nodes.

0–1 0.5–0.5–1.5

–1.5

–0.5

–1

1

0

0.5

1

1.5

Figure 6. The numerical result of case 2 with �=0.01.

In order to illustrate the feasibility of the proposed algorithm, we reconstruct several different
interior boundaries:

Case 1: A parabolic: x2/16+ y2/9= 1
25 .

Case 2: A kite-shaped curve given by the function {x(t)=cos(t)+0.65∗(cos(2t)−1), y(t)=
1.5∗sin(t), t ∈[0,2�]}.

Case 3: A bean-shaped curve given in the following form, for any t ∈[0,2�]

x(t) =
√
cos2(t)+0.26∗sin(t+0.5)∗cos(t)

y(t) =
√
cos2(t)+0.26∗sin(t+0.5)∗sin(t)
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0 0.5 1

0

0.5

1

1.5

–1 –0.5–1.5

–1.5

–0.5

–1

Figure 7. The numerical result of case 2 with �=0.005.

Figure 8. Initial mesh in case 3 with 286 nodes.

The boundary of the domain � has two parts: the exterior boundary �1 which is fixed; the
interior boundary �2 which is to be reconstructed (see Figures 1, 5 and 8). We use the finite
element method to simulate numerically. In the following figures, the solid line for the interior
curve represents the exact boundary and the dashed line gives the approximate boundary.

In case 1, Figures 2–4 give the comparison between the target shape with reconstructed shape
for the viscosity coefficient �=0.2,0.01,0.005, respectively. We find that for �=0.2,0.01, we
have a nice reconstruction, but for �=0.005, the result is not satisfactory in Figure 4. In case 2,
Figures 6 and 7 represent the comparison between the exact boundary with reconstructed boundary
for the viscosity coefficient �=0.01 and 0.005. Figures 9 and 10 indicate the numerical result of
the shape reconstruction for the viscosity coefficient �=0.02,0.01 of case 3.
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Figure 9. The numerical result of case 3 with �=0.02.
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Figure 10. The numerical result of case 3 with �=0.01.

Finally, the numerical examples show the feasibility of the proposed algorithm and further
research is necessary on efficient implementations.
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